BASICS OF WAVEFORM CAPNOGRAPHY

Waveform capnography assesses ventilation by monitoring exhaled carbon dioxide

Can use measurement and morphology during different phases of respiratory cycle to uncover pathophysiology

CHEST

© 2021 American College of Chest Physicians

OVERVIEW

- Capnography measures ventilation through exhaled CO₂ (P_ECO₂)
- Abnormal morphology can provide important data regarding pulmonary pathophysiology

CLINICAL APPLICATIONS

- Confirmation of endotracheal intubation
- Monitoring airway integrity
- Monitoring cardiac output
- Monitoring spontaneous respiration
- Assessing for CO₂ retention
 - Assessing ROSC during CPR by observing a sudden increase in waveform amplitude

BRONCHOSPASM AND REBREATHING/AIR TRAPPING

- Increase or loss of α-angle (aka "shark fin")
- Dead space has not finished emptying before next inspiration
- Increasing level of baseline P_ECO₂ due to air trapping

EMPHYSEMA

- Arterial CO₂ represented by early peak, not end-tidal, due to hypercompliance and poor gas exchange surface
- Pattern can also be seen with pneumothorax with air leak

SUDDEN LOSS OF WAVEFORM

- · Critical event needing emergency intervention
- ET tube disconnected, dislodged, kinked, or obstructed

is exhaled

MECHANICAL AIRWAY OBSTRUCTION

Correlates with PaCO₂

- Fixed mechanical obstruction affects both inspiration (phase IV/0) & expiration (phase II)
- α -angle and β -angle both >90°

CARDIOGENIC OSCILLATIONS

- Pulsation transmitted from the heart to the lung parenchyma produces small volume changes that manifest as oscillations
- Sign of cardiomegaly

DOWNTRENDING ETCO₂

- · Decreasing waveform size can indicate:
- Shock/low cardiac output state
- Pulmonary embolism
- Hyperventilation

- $\overline{\Lambda}$